TY - BOOK

T1 - Hypercube percolation

AU - Hofstad, van der, R.W.

AU - Nachmias, A.

PY - 2013

Y1 - 2013

N2 - We study bond percolation on the Hamming hypercube {0,1}^m around the critical probability p_c. It is known that if p=p_c(1+O(2^{-m/3})), then with high probability the largest connected component C_1 is of size Theta(2^{2m/3}) and that this quantity is non-concentrated. Here we show that for any sequence eps_m such that eps_m=o(1) but eps_m >> 2^{-m/3} percolation on the hypercube at p_c(1+eps_m) has
|C_1| = (2+o(1)) eps_m 2^m and |C_2| = o(eps_m 2^m) with high probability, where C_2 is the second largest component. This resolves a conjecture of Borgs, Chayes, the first author, Slade and Spencer [17].

AB - We study bond percolation on the Hamming hypercube {0,1}^m around the critical probability p_c. It is known that if p=p_c(1+O(2^{-m/3})), then with high probability the largest connected component C_1 is of size Theta(2^{2m/3}) and that this quantity is non-concentrated. Here we show that for any sequence eps_m such that eps_m=o(1) but eps_m >> 2^{-m/3} percolation on the hypercube at p_c(1+eps_m) has
|C_1| = (2+o(1)) eps_m 2^m and |C_2| = o(eps_m 2^m) with high probability, where C_2 is the second largest component. This resolves a conjecture of Borgs, Chayes, the first author, Slade and Spencer [17].

M3 - Report

T3 - Report Eurandom

BT - Hypercube percolation

PB - Eurandom

CY - Eindhoven

ER -