Hydroxylamine electrochemistry at polycrystalline platinum in acidic media: a voltammetric, DEMS and FTIR study

V. Rosca, G.L. Beltramo, M.T.M. Koper

Research output: Contribution to journalArticleAcademicpeer-review

33 Citations (Scopus)
1 Downloads (Pure)


The electrochemical activity of hydroxylamine on polycrystalline Pt in acidic media has been characterized using cyclic voltammetry, on-line differential electrochemical mass spectrometry (DEMS) and in situ FTIR. The electrochemistry of hydroxylamine (HAM) is essentially controlled by other species that interact strongly with the electrode surface. Therefore, quite moderate current densities, both in oxidation and reduction, are observed in a wide potential window between ca 0 and 1 V. The HAM electroreduction is a slow process and is masked by the Hupd. No formation of gaseous products was detected in this region; hence, ammonia must be the main product of HAM reduction. The HAM electro-oxidation is strongly influenced by the adsorption of its products, as well as their chemical transformations in solution. The key intermediate in HAM oxidation is NO, based both on voltammetric and spectroscopic evidence. Nitric oxide forms an adsorbed layer, stable over a wide potential region between ca. 0.55 and 0.75 V. At higher potentials NOads is oxidized to form (adsorbed) HNO2. At potentials above ca. 0.9 V the accumulation of HNO2 in solution, accompanied by its partial oxidation to NO2, is postulated. N2O formation, observed in the potential region between ca. 0.5 and 1 V, has multiple sources. The most important source of N2O is a homogeneous reaction between HNO2 and HAM. The Tafel slope analysis suggests the second electron transfer to be the rate-determining step in HAM oxidation to NOads. A tentative mechanism for this reaction is proposed.
Original languageEnglish
Pages (from-to)53-62
Number of pages10
JournalJournal of Electroanalytical Chemistry
Issue number1
Publication statusPublished - 2004


Dive into the research topics of 'Hydroxylamine electrochemistry at polycrystalline platinum in acidic media: a voltammetric, DEMS and FTIR study'. Together they form a unique fingerprint.

Cite this