Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers

J. Rooze, M. Andre, G.J.S. Gulik, van der, D. Fernandez-Rivas, J.G.E. Gardeniers, E. Rebrov, J.C. Schouten, J.T.F. Keurentjes

Research output: Contribution to journalArticleAcademicpeer-review

17 Citations (Scopus)

Abstract

Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 × 100 µm2 rectangular micro channel and in a circular 750 µm diameter milli channel has been investigated with computational fluid dynamics software and with imaging and radical production experiments. No radical production has been measured in the micro channel. This is probably because there is no spherically symmetrical collapse of the gas pockets in the channel which yield high hot spot temperatures. The potassium iodide oxidation yield in the presence of chlorohydrocarbons in the milli channel of up to 60 nM min-1 is comparable to values reported on hydrodynamic cavitation in literature, but lower than values for ultrasonic cavitation. These small constrictions can create high apparent cavitation collapse frequencies.
Original languageEnglish
Pages (from-to)499-508
JournalMicrofluidics and Nanofluidics
Volume12
Issue number1-4
DOIs
Publication statusPublished - 2012

Fingerprint Dive into the research topics of 'Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers'. Together they form a unique fingerprint.

  • Cite this

    Rooze, J., Andre, M., Gulik, van der, G. J. S., Fernandez-Rivas, D., Gardeniers, J. G. E., Rebrov, E., Schouten, J. C., & Keurentjes, J. T. F. (2012). Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers. Microfluidics and Nanofluidics, 12(1-4), 499-508. https://doi.org/10.1007/s10404-011-0891-5