Abstract
Body Sensor Networks (BSNs) are conveying notable attention due to their capabilities in supporting humans in their daily life. In particular, real-time and noninvasive monitoring of assisted livings is having great potential in many application domains, such as health care, sport/fitness, e-entertainment, social interaction and e-factory. And the basic as well as crucial feature characterizing such systems is the ability of detecting human actions and behaviors. In this paper, a novel approach for human posture recognition is proposed. Our BSN system relies on an information fusion method based on the D-S Evidence Theory, which is applied on the accelerometer data coming from multiple wearable sensors. Experimental results demonstrate that the developed prototype system is able to achieve a recognition accuracy between 98.5% and 100% for basic postures (standing, sitting, lying, squatting).
Original language | English |
---|---|
Title of host publication | Proceedings of the 12th IEEE International Symposium on Cluster Computing and the Grid Computing, 13-16 May 2012, Ottawa, Canada |
Place of Publication | Piscataway |
Publisher | IEEE Computer Society |
Pages | 912-917 |
ISBN (Print) | 978-0-7695-4691-9 |
DOIs | |
Publication status | Published - 2012 |