Homogenization of a pseudo-parabolic system via a spatial-temporal decoupling: upscaling and corrector estimates for perforated domains

Arthur Vromans, Fons van de Ven, A. Muntean

Research output: Book/ReportReportAcademic

12 Downloads (Pure)

Abstract

In this paper, we determine the convergence speed of an upscaling
of a pseudo-parabolic system containing drift terms with scale separation of
size 1. Both the upscaling and convergence speed determination exploit a natural spatial-temporal decomposition, which splits the pseudo-parabolic system into a spatial elliptic partial differential equation and a temporal ordinary differential equation. We extend the applicability to space-time domains that are a product of spatial and temporal domains, such as a time-independent perforated spatial domain. Finally, for special cases we show convergence speeds for global times, i.e. t ∈ R+, by using time intervals that converge to R+ as ↓ 0.
Translated title of the contributionHomogenizatie van een pseudo-parabolisch systeem via een spatiaal-temporale ontkoppeling: opschaling en corrector schattingen voor geperforeerde domeinen
Original languageEnglish
Place of PublicationEindhoven
PublisherTechnische Universiteit Eindhoven
Number of pages35
Publication statusPublished - Jan 2019

Publication series

NameCASA-Report
No.01
Volume19

Fingerprint Dive into the research topics of 'Homogenization of a pseudo-parabolic system via a spatial-temporal decoupling: upscaling and corrector estimates for perforated domains'. Together they form a unique fingerprint.

Cite this