High Tc superfluidity in a quantum degenerate Fermi gas

S.J.J.M.F. Kokkelmans, M. Holland, R. Walser, M.L. Chiofalo

Research output: Contribution to conferencePaperAcademic

Abstract

The phenomenon of superfluidity is closely related to Bose-Einstein condensation, as was shown in the foundation of the microscopic theory of superfluid ^4He in the 1960's. In bosonic fluids the phase transition is marked by the appearance of a macroscopic number of bosons in the lowest quantum state. In fermionic systems the occurrence of superconductivity and superfluidity, such as occurs in superconductors and liquid ^3He, is due to the rise of a pairing field and thereby, in a generalized sense, to a condensation of Cooper pairs. We show that a dilute fermionic alkali gas could undergo a transition to a superfluid state at an extraordinarily high transition temperature T_c, that can be up to half the Fermi temperature. Such a high value of Tc can be achieved through a Feshbach resonance pairing mechanism. The possibility to vary the magnetic field gives the unique opportunity to explore the still unknown crossover regime between the known BCS and BEC systems. Since this value of Tc is larger than the temperatures already achieved in a degenerate Fermi gas of potassium atoms, it should be possible to create this new type of quantum matter in current experiments.
Original languageEnglish
Publication statusPublished - 1 May 2001
Event32nd Annual Meeting of the APS Division of Atomic, Molecular, and Optical Physics (DAMOP), May 16-19, 2001, London, Ontario, Canada - London, Canada
Duration: 16 May 200119 May 2001

Conference

Conference32nd Annual Meeting of the APS Division of Atomic, Molecular, and Optical Physics (DAMOP), May 16-19, 2001, London, Ontario, Canada
Abbreviated titleDAMOP 2001
CountryCanada
CityLondon
Period16/05/0119/05/01

Fingerprint Dive into the research topics of 'High Tc superfluidity in a quantum degenerate Fermi gas'. Together they form a unique fingerprint.

Cite this