TY - JOUR
T1 - Goal-adaptive isogeometric analysis with hierarchical splines
AU - Kuru, G.
AU - Verhoosel, C.V.
AU - Zee, van der, K.G.
AU - Brummelen, van, E.H.
PY - 2014
Y1 - 2014
N2 - In this work, a method of goal-adaptive Isogeometric Analysis is proposed. We combine goal-oriented error estimation and adaptivity with hierarchical B-splines for local h-refinement. The goal-oriented error estimator is computed with a p-refined discrete dual space, which is adaptively refined alongside the primal space. This discrete dual space is proven to be a strict superset of the primal space. Hierarchical refinements are introduced in marked regions that are formed as the union of chosen coarse-level spline supports from the primal basis. We present two ways of extracting localized refinement indicators suitable for the hierarchical refinement procedure: one based on a partitioning of the dual-weighted residual into contributions of basis function supports and one based on the combination of element indicators within a basis function support. The proposed goal-oriented adaptive strategy is exemplified for the Poisson problem and a free-surface flow problem. Numerical experiments on these problems show convergence of the adaptive method with optimal rates. Furthermore, the corresponding goal-oriented error estimators are shown to be accurate, with effectivity indices in the range of 0.7-1.1.
AB - In this work, a method of goal-adaptive Isogeometric Analysis is proposed. We combine goal-oriented error estimation and adaptivity with hierarchical B-splines for local h-refinement. The goal-oriented error estimator is computed with a p-refined discrete dual space, which is adaptively refined alongside the primal space. This discrete dual space is proven to be a strict superset of the primal space. Hierarchical refinements are introduced in marked regions that are formed as the union of chosen coarse-level spline supports from the primal basis. We present two ways of extracting localized refinement indicators suitable for the hierarchical refinement procedure: one based on a partitioning of the dual-weighted residual into contributions of basis function supports and one based on the combination of element indicators within a basis function support. The proposed goal-oriented adaptive strategy is exemplified for the Poisson problem and a free-surface flow problem. Numerical experiments on these problems show convergence of the adaptive method with optimal rates. Furthermore, the corresponding goal-oriented error estimators are shown to be accurate, with effectivity indices in the range of 0.7-1.1.
U2 - 10.1016/j.cma.2013.11.026
DO - 10.1016/j.cma.2013.11.026
M3 - Article
VL - 270
SP - 270
EP - 292
JO - Computer Methods in Applied Mechanics and Engineering
JF - Computer Methods in Applied Mechanics and Engineering
SN - 0045-7825
ER -