Abstract
Turbulent emulsions are complex physical systems characterized by a strong and dynamical coupling between small-scale droplets and large-scale rheology. By using a specifically designed Taylor–Couette shear flow system, we are able to characterize the statistical properties of a turbulent emulsion made of oil droplets dispersed in an ethanol–water continuous solution, at an oil volume fraction up to 40 %. We find that the dependence of the droplet size on the Reynolds number of the flow at a volume fraction of 1 % can be well described by the Hinze criterion. The distribution of droplet sizes is found to follow a log-normal distribution, hinting at a fragmentation process as the possible mechanism dominating droplet formation. Additionally, the effective viscosity of the turbulent emulsion increases with the volume fraction of the dispersed oil phase, and decreases when the shear strength is increased. We find that the dependence of the effective viscosity on the shear rate can be described by the Herschel–Bulkley model, with a flow index monotonically decreasing with increasing oil volume fraction. This finding indicates that the degree of shear thinning systematically increases with the volume fraction of the dispersed phase. The current findings have important implications for bridging the knowledge on turbulence and low-Reynolds-number emulsion flows to turbulent emulsion flows.
Original language | English |
---|---|
Article number | A13 |
Number of pages | 17 |
Journal | Journal of Fluid Mechanics |
Volume | 912 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- Taylor-Couette flow
- emulsions
- multiphase flow