TY - JOUR
T1 - Geometric spanners for weighted point sets
AU - Abam, M.A.
AU - Berg, de, M.T.
AU - Farshi, M.
AU - Gudmundsson, J.
AU - Smid, M.H.M.
PY - 2011
Y1 - 2011
N2 - Let (S,d) be a finite metric space, where each element p¿¿¿S has a non-negative weight w(p). We study spanners for the set S with respect to weighted distance function d w , where d w (p,q) is w(p)¿+¿d(p,q)¿+¿wq if p¿¿¿q and 0 otherwise. We present a general method for turning spanners with respect to the d-metric into spanners with respect to the d w -metric. For any given e>¿0, we can apply our method to obtain (5¿+¿e)-spanners with a linear number of edges for three cases: points in Euclidean space R d , points in spaces of bounded doubling dimension, and points on the boundary of a convex body in R d where d is the geodesic distance function.
We also describe an alternative method that leads to (2¿+¿e)-spanners for points in R d and for points on the boundary of a convex body in R d . The number of edges in these spanners is O(nlogn). This bound on the stretch factor is nearly optimal: in any finite metric space and for any e>¿0, it is possible to assign weights to the elements such that any non-complete graph has stretch factor larger than 2¿-¿e.
AB - Let (S,d) be a finite metric space, where each element p¿¿¿S has a non-negative weight w(p). We study spanners for the set S with respect to weighted distance function d w , where d w (p,q) is w(p)¿+¿d(p,q)¿+¿wq if p¿¿¿q and 0 otherwise. We present a general method for turning spanners with respect to the d-metric into spanners with respect to the d w -metric. For any given e>¿0, we can apply our method to obtain (5¿+¿e)-spanners with a linear number of edges for three cases: points in Euclidean space R d , points in spaces of bounded doubling dimension, and points on the boundary of a convex body in R d where d is the geodesic distance function.
We also describe an alternative method that leads to (2¿+¿e)-spanners for points in R d and for points on the boundary of a convex body in R d . The number of edges in these spanners is O(nlogn). This bound on the stretch factor is nearly optimal: in any finite metric space and for any e>¿0, it is possible to assign weights to the elements such that any non-complete graph has stretch factor larger than 2¿-¿e.
U2 - 10.1007/s00453-010-9465-2
DO - 10.1007/s00453-010-9465-2
M3 - Article
SN - 0178-4617
VL - 61
SP - 207
EP - 225
JO - Algorithmica
JF - Algorithmica
IS - 1
ER -