Gas-solid interaction force from direct numerical simulation (DNS) of binary systems with extreme diameter ratios

S. Sarkar, S.H.L. Kriebitzsch, M.A. Hoef, van der, J.A.M. Kuipers

Research output: Contribution to journalArticleAcademicpeer-review

14 Citations (Scopus)

Abstract

Fluid–particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid–particle interactions are originally derived from monodisperse systems, with ad hoc modifications to account for polydispersity. In previous work it was shown that for bidisperse systems with moderate diameter ratios of 1:2 to 1:4, this approach leads to discrepancies, and a correction factor is needed. In this work we demonstrate that this correction factor also holds for more extreme diameter ratios of 1:5, 1:7 and 1:10, although the force on the large particles is slightly overestimated when using the correction factor. The main origin of the correction is that the void surrounding the large particles becomes less in case of a bidisperse mixture, as compared to a monodisperse system with the same volume fraction. We further investigated this discrepancy by calculating the volume per particle by means of Voronoi tessellation.
Original languageEnglish
Pages (from-to)233-237
Number of pages5
JournalParticuology
Volume7
Issue number4
DOIs
Publication statusPublished - 2009

Fingerprint

Dive into the research topics of 'Gas-solid interaction force from direct numerical simulation (DNS) of binary systems with extreme diameter ratios'. Together they form a unique fingerprint.

Cite this