Frequency-domain bounds for non-negative band-limited functions

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)

Abstract

In this paper we present pointwise and integral frequency-domain bounds for non-negative, band-limited functions of one continuous or discrete variable, and for radially symmetric functions of two continuous variables. We use the Akhiezer-Krein theorem to prove pointwise and integral bounds for the case of functions of one continuous variable, and to sharpen these bounds for the case of radially symmetric functions of two continuous variables. We use the Riesz-Fejér theorem to prove a particular type of pointwise bound for the case of functions of one continuous variable. We use the Bochner theorem to prove pointwise bounds for the case of functions of one discrete variable. The bounds we present are of particular interest to Fourier optics (Lukosz-type bounds). Many of the results amount to finding the largest eigenvalue of certain truncated convolution operators and Toeplitz matrices. Our explicit results on pointwise bounds are also of interest for the characterization of the feasibility region of the partial autocorrelation problem of finite-length, discrete-time signals considered recently by Steinhardt and Makhoul, and by Delsarte, Genin and Kamp.
Original languageEnglish
Pages (from-to)325-366
Number of pages22
JournalPhilips Journal of Research
Volume45
Issue number5
Publication statusPublished - 1990

Fingerprint Dive into the research topics of 'Frequency-domain bounds for non-negative band-limited functions'. Together they form a unique fingerprint.

Cite this