Abstract
Historical Dutch oak wood cabinets occasionally show cracks that might originate from hygro-thermal climate fluctuations. This damage mechanism needs to be understood in full detail in order to optimally preserve these museum objects for future generations. For this purpose, in this paper the fracture response of historic oak wood beams is analysed under three-point bending in a combined experimental-numerical study. The numerical results are computed with the finite element method (FEM), whereby the discrete fracture behaviour is simulated using interface elements equipped with an interface damage model. Both the experimental failure response and cracking path are in good agreement with the FEM results. Scanning electron microscopy photos taken at the crack plane illustrate that the fracture toughness includes the effect of cell bridging. The influence on the failure response by material anisotropy and the location of a geometrical imperfection at the beam notch are demonstrated.
Original language | English |
---|---|
Title of host publication | Analysis and characterisation of wooden cultural heritage by scientific engineering methods, 28-29 April 2016, Halle, Germany |
Pages | 51-62 |
Number of pages | 12 |
Publication status | Published - 28 Apr 2016 |
Event | Analysis and Characterisation of Wooden Cultural Heritage by Scientific Engineering Methods - Halle, Germany Duration: 28 Apr 2016 → 29 Apr 2016 |
Conference
Conference | Analysis and Characterisation of Wooden Cultural Heritage by Scientific Engineering Methods |
---|---|
Country/Territory | Germany |
City | Halle |
Period | 28/04/16 → 29/04/16 |