TY - JOUR
T1 - Focal muscle vibration and action observation
T2 - a combined approach for muscle strengthening
AU - Azzollini, Valentina
AU - Fragapane, Noemi
AU - Baster, Zbigniew
AU - Carozzo, Simone
AU - Dalise, Stefania
AU - Chisari, Carmelo
PY - 2024/9/30
Y1 - 2024/9/30
N2 - Muscle strength is essential for autonomy in daily activities and performance in sports activities. Yet, conventional strength training is challenging during recovery from pathological conditions. This study investigates a novel combined intervention employing Focal Muscle Vibration (FMV) and Action Observation (AO) to enhance muscle strength. Twenty-seven healthy volunteers (18 females and 9 males, aged 22 to 42 years) were enrolled for an intervention-control study comparing 2 groups: the intervention group received AO treatment with FMV on the right leg, and the control group underwent only FMV on the right leg. This design allowed the comparison of four conditions: FMV+AO (intervention group, right leg), AO alone (intervention group, left leg), FMV alone (control group, right leg), and no-treatment NT (control group, left leg). The treatment, conducted five times a week (Mon-Fri) for two weeks, involved a 20-minute session of FMV on the right quadriceps, coupled, for the intervention group, with the observation of a gym training video. The assessments of Maximum Voluntary Contraction (MVC), and fatigue coefficient (FC) expressed at knee extension bilaterally were measured at the beginning (T0), after the first week (T1), at the end of treatment (T2), and one-week post-intervention for the follow-up (T3). The FMV+AO group demonstrated a significant improvement in MVC over time, reaching statistical significance at T2 and maintaining the gain at T3. In contrast, all the other conditions demonstrated milder MVC increases without statistical significance. FC did not differ significantly in any condition. The combination of FMV and AO optimized muscle strengthening, offering insights for targeted treatments in various settings.
AB - Muscle strength is essential for autonomy in daily activities and performance in sports activities. Yet, conventional strength training is challenging during recovery from pathological conditions. This study investigates a novel combined intervention employing Focal Muscle Vibration (FMV) and Action Observation (AO) to enhance muscle strength. Twenty-seven healthy volunteers (18 females and 9 males, aged 22 to 42 years) were enrolled for an intervention-control study comparing 2 groups: the intervention group received AO treatment with FMV on the right leg, and the control group underwent only FMV on the right leg. This design allowed the comparison of four conditions: FMV+AO (intervention group, right leg), AO alone (intervention group, left leg), FMV alone (control group, right leg), and no-treatment NT (control group, left leg). The treatment, conducted five times a week (Mon-Fri) for two weeks, involved a 20-minute session of FMV on the right quadriceps, coupled, for the intervention group, with the observation of a gym training video. The assessments of Maximum Voluntary Contraction (MVC), and fatigue coefficient (FC) expressed at knee extension bilaterally were measured at the beginning (T0), after the first week (T1), at the end of treatment (T2), and one-week post-intervention for the follow-up (T3). The FMV+AO group demonstrated a significant improvement in MVC over time, reaching statistical significance at T2 and maintaining the gain at T3. In contrast, all the other conditions demonstrated milder MVC increases without statistical significance. FC did not differ significantly in any condition. The combination of FMV and AO optimized muscle strengthening, offering insights for targeted treatments in various settings.
KW - rehabilitation
KW - action observation
KW - muscle strengthening
KW - muscle weakness
KW - vibration
UR - http://www.scopus.com/inward/record.url?scp=85206088128&partnerID=8YFLogxK
U2 - 10.4081/ejtm.2024.12366
DO - 10.4081/ejtm.2024.12366
M3 - Article
C2 - 39228230
SN - 2037-7452
VL - 34
SP - 39
EP - 49
JO - European Journal of Translational Myology
JF - European Journal of Translational Myology
IS - 3
ER -