Fluidization of spherocylindrical particles

V.V. Mahajan, T.M.J. Nijssen, B. Fitzgerald, J. Hofman, J.A.M. Kuipers, J.T. Padding

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)
116 Downloads (Pure)

Abstract

Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

Original languageEnglish
Article number06019
Number of pages4
JournalEPJ Web of Conferences
Volume140
DOIs
Publication statusPublished - 30 Jun 2017
Event8th International Conference on Micromechanics on Granular Media (Powders and Grains (PG)2017), July 3-7, 2017, Montpellier, France - Corum conference cente, Montpellier, France
Duration: 3 Jul 20177 Jul 2017
http://www.pg2017.org/en/

Fingerprint Dive into the research topics of 'Fluidization of spherocylindrical particles'. Together they form a unique fingerprint.

  • Cite this