Fluid limits for networks with bandwidth sharing and general document size distributions

H.C. Gromoll, R.J. Williams

Research output: Book/ReportReportAcademic


We consider a stochastic model of Internet congestion control, introduced by Massoulie and Roberts, that represents the randomly varying number of flows in a network where bandwidth is shared amongst document transfers. In contrast to an earlier work by Kelly and Williams, the present paper allows inter arrival times and document sizes to be generally distributed, rather than exponentially distributed. Furthermore, we allow a fairly general class of bandwidth sharing policies that includes the weighted a-fair policies of Mo and Walrand, as well as certain other utility based scheduling policies. To describe the evolution of the system, measure valued processes are used to keep track of the residual document sizes of all flows through the network. We propose a fluid model (or formal functional law of large numbers approximation) associated with the stochastic flow level model. Under mild conditions, we show that the appropriately rescaled measure valued processes corresponding to a sequence of such models (with fixed network structure) are tight, and that any weak limit point of the sequence is almost surely a fluid model solution. For the special case of weighted affair policies, we also characterize the invariant states of the fluid model.
Original languageEnglish
Place of PublicationEindhoven
Number of pages46
Publication statusPublished - 2008

Publication series

NameReport Eurandom
ISSN (Print)1389-2355


Dive into the research topics of 'Fluid limits for networks with bandwidth sharing and general document size distributions'. Together they form a unique fingerprint.

Cite this