Abstract
Routing choices of walking pedestrians in geometrically complex environments are regulated by the interplay of a multitude of factors such as local crowding, (estimated) time to destination, and (perceived) comfort. As individual choices combine, macroscopic traffic flow patterns emerge. Understanding the physical mechanisms yielding macroscopic traffic distributions in environments with complex geometries is an outstanding scientific challenge, with implications in the design and management of crowded pedestrian facilities. In this work, we analyze, by means of extensive real-life pedestrian tracking data, unidirectional flow dynamics in an asymmetric setting, as a prototype for many common complex geometries. Our environment is composed of a main walkway and a slightly longer detour. Our measurements have been collected during a dedicated high-accuracy pedestrian tracking campaign held in Eindhoven (The Netherlands). We show that the dynamics can be quantitatively modeled by introducing a collective discomfort function, and that fluctuations on the behavior of single individuals are crucial to correctly recover the global statistical behavior. Notably, the observed traffic split substantially departs from an optimal, transport-wise, partition, as the global pedestrian throughput is not maximized.
Original language | English |
---|---|
Article number | pgac169 |
Number of pages | 9 |
Journal | PNAS Nexus |
Volume | 1 |
Issue number | 4 |
DOIs | |
Publication status | Published - Sept 2022 |
Funding
This work is partially supported by the HTSM research program “HTCrowd: a high-tech platform for human crowd flows monitoring, modeling and nudging” with project number 17962 and partially by the VENI-AES research program “Understanding and controlling the flow of human crowds” with project number 16771, both financed by the Dutch Research Council (NWO).
Funders | Funder number |
---|---|
High Tech Systemen en Materialen (HTSM) | 17962, 16771 |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek |
Keywords
- collective behavior
- fluctuations
- high-statistics pedestrian dynamics
- pedestrians routing
- stochastic variational principle
Fingerprint
Dive into the research topics of 'Fluctuations in pedestrian dynamics routing choices'. Together they form a unique fingerprint.Datasets
-
Fluctuations in pedestrian dynamics routing choices
Gabbana, A. (Creator), Toschi, F. (Creator), Ross, P. R. (Creator), Haans, A. (Creator) & Corbetta, A. (Creator), Zenodo, 18 Aug 2022
Dataset