Feature point selection for object-based motion estimation on a Programmable Device

R.B. Wittebrood, G. Haan, de

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

8 Citations (Scopus)

Abstract

Recently, we reported on a recursive algorithm enabling real-time object-based motion estimation (OME) for standard definition video on a digital signal processor (DSP). The algorithm approximates the motion of objects in the image with parametric motion models and creates a segmentation mask by assigning the best matching model to image parts on a block-by-block basis. A parameter estimation module determines the parameters of the motion models on a small fraction of the pictorial data called feature points. In this paper, we propose a new, computationally very efficient, feature point selection method that improves the convergence of the motion parameter estimation process.
Original languageEnglish
Title of host publicationVisual Communications and Image Processing 2002, San Jose, CA, USA
Place of PublicationBellingham
PublisherSPIE
Pages687-697
DOIs
Publication statusPublished - 2002
EventVisual Communications and Image Processing 2002 (VCIP 2002), January 20-25, 2002, San Jose, CA, USA - San Jose, CA, United States
Duration: 20 Jan 200225 Jan 2002

Publication series

NameProceedings of SPIE
Volume4671
ISSN (Print)0277-786X

Conference

ConferenceVisual Communications and Image Processing 2002 (VCIP 2002), January 20-25, 2002, San Jose, CA, USA
Abbreviated titleVCIP 2002
CountryUnited States
CitySan Jose, CA
Period20/01/0225/01/02
OtherViual Communications and Image Processing 2002

Fingerprint

Motion estimation
Parameter estimation
Digital signal processors
Masks

Cite this

Wittebrood, R. B., & Haan, de, G. (2002). Feature point selection for object-based motion estimation on a Programmable Device. In Visual Communications and Image Processing 2002, San Jose, CA, USA (pp. 687-697). (Proceedings of SPIE; Vol. 4671). Bellingham: SPIE. https://doi.org/10.1117/12.453112
Wittebrood, R.B. ; Haan, de, G. / Feature point selection for object-based motion estimation on a Programmable Device. Visual Communications and Image Processing 2002, San Jose, CA, USA. Bellingham : SPIE, 2002. pp. 687-697 (Proceedings of SPIE).
@inproceedings{85a88745fc9f4bab93ecb5fb879e4cf9,
title = "Feature point selection for object-based motion estimation on a Programmable Device",
abstract = "Recently, we reported on a recursive algorithm enabling real-time object-based motion estimation (OME) for standard definition video on a digital signal processor (DSP). The algorithm approximates the motion of objects in the image with parametric motion models and creates a segmentation mask by assigning the best matching model to image parts on a block-by-block basis. A parameter estimation module determines the parameters of the motion models on a small fraction of the pictorial data called feature points. In this paper, we propose a new, computationally very efficient, feature point selection method that improves the convergence of the motion parameter estimation process.",
author = "R.B. Wittebrood and {Haan, de}, G.",
year = "2002",
doi = "10.1117/12.453112",
language = "English",
series = "Proceedings of SPIE",
publisher = "SPIE",
pages = "687--697",
booktitle = "Visual Communications and Image Processing 2002, San Jose, CA, USA",
address = "United States",

}

Wittebrood, RB & Haan, de, G 2002, Feature point selection for object-based motion estimation on a Programmable Device. in Visual Communications and Image Processing 2002, San Jose, CA, USA. Proceedings of SPIE, vol. 4671, SPIE, Bellingham, pp. 687-697, Visual Communications and Image Processing 2002 (VCIP 2002), January 20-25, 2002, San Jose, CA, USA, San Jose, CA, United States, 20/01/02. https://doi.org/10.1117/12.453112

Feature point selection for object-based motion estimation on a Programmable Device. / Wittebrood, R.B.; Haan, de, G.

Visual Communications and Image Processing 2002, San Jose, CA, USA. Bellingham : SPIE, 2002. p. 687-697 (Proceedings of SPIE; Vol. 4671).

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

TY - GEN

T1 - Feature point selection for object-based motion estimation on a Programmable Device

AU - Wittebrood, R.B.

AU - Haan, de, G.

PY - 2002

Y1 - 2002

N2 - Recently, we reported on a recursive algorithm enabling real-time object-based motion estimation (OME) for standard definition video on a digital signal processor (DSP). The algorithm approximates the motion of objects in the image with parametric motion models and creates a segmentation mask by assigning the best matching model to image parts on a block-by-block basis. A parameter estimation module determines the parameters of the motion models on a small fraction of the pictorial data called feature points. In this paper, we propose a new, computationally very efficient, feature point selection method that improves the convergence of the motion parameter estimation process.

AB - Recently, we reported on a recursive algorithm enabling real-time object-based motion estimation (OME) for standard definition video on a digital signal processor (DSP). The algorithm approximates the motion of objects in the image with parametric motion models and creates a segmentation mask by assigning the best matching model to image parts on a block-by-block basis. A parameter estimation module determines the parameters of the motion models on a small fraction of the pictorial data called feature points. In this paper, we propose a new, computationally very efficient, feature point selection method that improves the convergence of the motion parameter estimation process.

U2 - 10.1117/12.453112

DO - 10.1117/12.453112

M3 - Conference contribution

T3 - Proceedings of SPIE

SP - 687

EP - 697

BT - Visual Communications and Image Processing 2002, San Jose, CA, USA

PB - SPIE

CY - Bellingham

ER -

Wittebrood RB, Haan, de G. Feature point selection for object-based motion estimation on a Programmable Device. In Visual Communications and Image Processing 2002, San Jose, CA, USA. Bellingham: SPIE. 2002. p. 687-697. (Proceedings of SPIE). https://doi.org/10.1117/12.453112