Abstract
We present a new algorithm for the widely used density-based clustering method DBscan. Our algorithm computes the DBscan-clustering in O(nlogn) time in R 2 , irrespective of the scale parameter ε (and assuming the second parameter MinPts is set to a fixed constant, as is the case in practice). Experiments show that the new algorithm is not only fast in theory, but that a slightly simplified version is competitive in practice and much less sensitive to the choice of ε than the original DBscan algorithm. We also present an O(nlogn) randomized algorithm for HDBscan in the plane---HDBscan is a hierarchical version of DBscan introduced recently---and we show how to compute an approximate version of HDBscan in near-linear time in any fixed dimension.
Original language | English |
---|---|
Article number | 1702.08607 |
Number of pages | 18 |
Journal | arXiv |
Issue number | 1702.08607 |
Publication status | Published - 2017 |