TY - BOOK

T1 - Faster binary-field multiplication and faster binary-field MACs

AU - Bernstein, D.J.

AU - Chou, T.

PY - 2014

Y1 - 2014

N2 - This paper shows how to securely authenticate messages using just 29 bit operations per authenticated bit, plus a constant overhead per message. The authenticator is a standard type of "universal" hash function providing information-theoretic security; what is new is computing this type of hash function at very high speed.
At a lower level, this paper shows how to multiply two elements of a field of size 2^128 using just 9062 \approx 71 * 128 bit operations, and how to multiply two elements of a field of size 2^256 using just 22164 \approx 87 * 256 bit operations. This performance relies on a new representation of field elements and new FFT-based multiplication techniques.
This paper's constant-time software uses just 1.89 Core 2 cycles per byte to authenticate very long messages. On a Sandy Bridge it takes 1.43 cycles per byte, without using Intel's PCLMULQDQ polynomial-multiplication hardware. This is much faster than the speed records for constant-time implementations of GHASH without PCLMULQDQ (over 10 cycles/byte), even faster than Intel's best Sandy Bridge implementation of GHASH with PCLMULQDQ (1.79 cycles/byte), and almost as fast as state-of-the-art 128-bit prime-field MACs using Intel's integer-multiplication hardware (around 1 cycle/byte).
Keywords: Performance, FFTs, Polynomial multiplication, Universal hashing, Message authentication

AB - This paper shows how to securely authenticate messages using just 29 bit operations per authenticated bit, plus a constant overhead per message. The authenticator is a standard type of "universal" hash function providing information-theoretic security; what is new is computing this type of hash function at very high speed.
At a lower level, this paper shows how to multiply two elements of a field of size 2^128 using just 9062 \approx 71 * 128 bit operations, and how to multiply two elements of a field of size 2^256 using just 22164 \approx 87 * 256 bit operations. This performance relies on a new representation of field elements and new FFT-based multiplication techniques.
This paper's constant-time software uses just 1.89 Core 2 cycles per byte to authenticate very long messages. On a Sandy Bridge it takes 1.43 cycles per byte, without using Intel's PCLMULQDQ polynomial-multiplication hardware. This is much faster than the speed records for constant-time implementations of GHASH without PCLMULQDQ (over 10 cycles/byte), even faster than Intel's best Sandy Bridge implementation of GHASH with PCLMULQDQ (1.79 cycles/byte), and almost as fast as state-of-the-art 128-bit prime-field MACs using Intel's integer-multiplication hardware (around 1 cycle/byte).
Keywords: Performance, FFTs, Polynomial multiplication, Universal hashing, Message authentication

UR - http://eprint.iacr.org/2014/729.pdf

M3 - Report

T3 - Cryptology ePrint Archive

BT - Faster binary-field multiplication and faster binary-field MACs

PB - IACR

ER -