Abstract
A critical step in a cutting plane algorithm is separation, i.e., establishing whether a given vector x violates an inequality belonging to a specific class. It is customary to express the time complexity of a separation algorithm in the number of variables n. Here, we argue that a separation algorithm may instead process the vector containing the positive components of x, denoted as supp(x), which offers a more compact representation, especially if x is sparse; we also propose to express the time complexity in terms of |supp(x)|. Although several well-known separation algorithms exploit the sparsity of x, we revisit this idea in order to take sparsity explicitly into account in the time-complexity of separation and also design faster algorithms. We apply this approach to two classes of facet-defining inequalities for the three-index assignment problem, and obtain separation algorithms whose time complexity is linear in |supp(x)| instead of n. We indicate that this can be generalized to the axial k-index assignment problem and we show empirically how the separation algorithms exploiting sparsity improve on existing ones by running them on the largest instances reported in the literature.
Original language | English |
---|---|
Pages (from-to) | 39-59 |
Number of pages | 21 |
Journal | Mathematical Programming Computation |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - Mar 2017 |
Externally published | Yes |
Keywords
- 90C10
- 90C27
- 90C57