Abstract
In this paper, we propose an approach for parametric system identification for a class of continuous-time Lur’e-type systems using only steady-state input and output data. Employing a quasi-Newton optimization scheme, we minimize an output error criterion constrained to the set of convergent models, which enforces a stability certificate on the identified model. To compute the steady-state model response efficiently, we adopt the Mixed-Time-Frequency (MTF) algorithm. Furthermore, using the MTF algorithm, we present a method to efficiently compute the gradient of the objective function with any user-defined accuracy. Starting with an initial convergent model estimate, the developed identification algorithm optimizes parameter estimates. The effectiveness of the proposed approach is illustrated in a simulation example.
Original language | English |
---|---|
Pages (from-to) | 227-232 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 52 |
Issue number | 16 |
DOIs | |
Publication status | Published - 20 Dec 2019 |
Event | 8th IFAC Symposium on Mechatronic Systems (MECHATRONICS 2019), and 11th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2019) Vienna, Austria - Vienna, Austria Duration: 4 Sept 2019 → 6 Sept 2019 http://www.mechatronicsnolcos2019.org/ |
Keywords
- Nonlinear System Identification
- Stability Certification