TY - JOUR
T1 - Extremes of multidimensional Gaussian processes
AU - Debicki, K.G.
AU - Kosinski, K.M.
AU - Mandjes, M.R.H.
AU - Rolski, T.
PY - 2010
Y1 - 2010
N2 - This paper considers extreme values attained by a centered, multidimensional Gaussian process $X(t)= (X_1(t),\ldots,X_n(t))$ minus drift $d(t)=(d_1(t),\ldots,d_n(t))$, on an arbitrary set $T$. Under mild regularity conditions, we establish the asymptotics of \[ \log P \left(\exists{t\in T}:\bigcap_{i=1}^n\left\{X_i(t)-d_i(t)>q_iu\right\}\right), \] for positive thresholds $q_i>0$, $i=1,\ldots,n$, and $u\toi$. Our findings generalize and extend previously known results for the single-dimensional and two-dimensional cases. A number of examples illustrate the theory.
AB - This paper considers extreme values attained by a centered, multidimensional Gaussian process $X(t)= (X_1(t),\ldots,X_n(t))$ minus drift $d(t)=(d_1(t),\ldots,d_n(t))$, on an arbitrary set $T$. Under mild regularity conditions, we establish the asymptotics of \[ \log P \left(\exists{t\in T}:\bigcap_{i=1}^n\left\{X_i(t)-d_i(t)>q_iu\right\}\right), \] for positive thresholds $q_i>0$, $i=1,\ldots,n$, and $u\toi$. Our findings generalize and extend previously known results for the single-dimensional and two-dimensional cases. A number of examples illustrate the theory.
U2 - 10.1016/j.spa.2010.08.010
DO - 10.1016/j.spa.2010.08.010
M3 - Article
SN - 0304-4149
VL - 120
SP - 2289
EP - 2301
JO - Stochastic Processes and their Applications
JF - Stochastic Processes and their Applications
IS - 12
ER -