External stability of a double integrator with saturated linear control laws

A.A. Stoorvogel, G. Shi, A. Saberi

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)

Abstract

For a double integrator subject to input saturation, it is well-known that linear control laws can achieve global asymptotic stability. But a study of external stability for such a simple system reveals an unexpectedly rich nature, It is shown in this paper that external Lp stability for lion-in put-additive disturbance only holds for p ::; 2, but not for p > 2 no matter what linear control law is used. However, for input-additive disturbance, Lp stability holds for all 1 ::; p <(Xl, As a third result, we show that the double integrator system controlled by a saturating linear feedback is not input-to-state stable (ISS) even when all disturbances have their magnitudes restricted to be arbitrarily small. These results for the first time reveal t,hat external stability of nonlinear systems is essentially different from that of linear systems. A fundamental discovery in this study is that the external stability of nonlinear systems cannot be separated from the internal state behavior.
Original languageEnglish
Pages (from-to)429-451
JournalDynamics of Continuous, Discrete and Impulsive Systems. Series B: Applications & Algorithms
Volume11
Issue number4-5
Publication statusPublished - 2004

Fingerprint

Dive into the research topics of 'External stability of a double integrator with saturated linear control laws'. Together they form a unique fingerprint.

Cite this