Extension of White's layered model to the full frequency range

Bouko Vogelaar, D.M.J. Smeulders

Research output: Contribution to journalArticleAcademicpeer-review

34 Citations (Scopus)

Abstract

The low-frequency theory of the White model to predict the dispersion and intrinsic attenuation in a single porous skeleton saturated with periodic layers of two immiscible fluids is extended to the full frequency range using the Biot theory. The extension is similar to the Dutta–Odé model for spherical inhomogeneities. Below the layer resonance frequency, the acoustic bulk properties for several gas–water fractions are in good agreement with the original White model. Deviations start to occur at higher frequencies due to the growing importance of resonance phenomena that were neglected in the original White model. The full model predicts significantly higher damping at sonic frequencies than the original White model. We also show that attenuation is significantly dependent on porosity variations. With realistic rock and fluid properties, a maximum attenuation of about 0.3 is found at seismic frequencies.
Original languageEnglish
Pages (from-to)685-695
Number of pages11
JournalGeophysical Prospecting
Volume55
Issue number5
DOIs
Publication statusPublished - 2007

Fingerprint

Dive into the research topics of 'Extension of White's layered model to the full frequency range'. Together they form a unique fingerprint.

Cite this