TY - JOUR
T1 - Extending dynamic convex risk measures form discrete time to continuous time: A convergence approach
AU - Stadje, M.A.
PY - 2010
Y1 - 2010
N2 - We present an approach for the transition from convex risk measures in a certain discrete time setting to their counterparts in continuous time. The aim of this paper is to show that a large class of convex risk measures in continuous time can be obtained as limits of discrete time-consistent convex risk measures. The discrete time risk measures are constructed from properly rescaled (‘tilted’) one-period convex risk measures, using a d-dimensional random walk converging to a Brownian motion. Under suitable conditions (covering many standard one-period risk measures) we obtain convergence of the discrete risk measures to the solution of a BSDE, defining a convex risk measure in continuous time, whose driver can then be viewed as the continuous time analogue of the discrete ‘driver’ characterizing the one-period risk. We derive the limiting drivers for the semi-deviation risk measure, Value at Risk, Average Value at Risk, and the Gini risk measure in closed form.
AB - We present an approach for the transition from convex risk measures in a certain discrete time setting to their counterparts in continuous time. The aim of this paper is to show that a large class of convex risk measures in continuous time can be obtained as limits of discrete time-consistent convex risk measures. The discrete time risk measures are constructed from properly rescaled (‘tilted’) one-period convex risk measures, using a d-dimensional random walk converging to a Brownian motion. Under suitable conditions (covering many standard one-period risk measures) we obtain convergence of the discrete risk measures to the solution of a BSDE, defining a convex risk measure in continuous time, whose driver can then be viewed as the continuous time analogue of the discrete ‘driver’ characterizing the one-period risk. We derive the limiting drivers for the semi-deviation risk measure, Value at Risk, Average Value at Risk, and the Gini risk measure in closed form.
U2 - 10.1016/j.insmatheco.2010.08.005
DO - 10.1016/j.insmatheco.2010.08.005
M3 - Article
SN - 0167-6687
VL - 47
SP - 391
EP - 404
JO - Insurance: Mathematics and Economics
JF - Insurance: Mathematics and Economics
IS - 3
ER -