Extended full-MHD simulation of non-linear instabilities in tokamak plasmas

JET Contributors, S. J.P. Pamela (Corresponding author), G. T.A. Huijsmans

Research output: Contribution to journalArticleAcademicpeer-review

16 Citations (SciVal)

Abstract

Non-linear magnetohydrodynamic (MHD) simulations play an essential role in active research and understanding of tokamak plasmas for the realization of a fusion power plant. The development of MHD codes such as JOREK is a key aspect of this research effort. In this paper, we present an operational version of the full-MHD model implemented in JOREK, a significant advancement from the reduced-MHD model used for previous studies, where assumptions were made on the perpendicular dynamics and the toroidal magnetic field. The final model is presented in detail, and benchmarks are performed using both linear and non-linear simulations, including comparisons between the new full-MHD model of JOREK and the previously extensively studied reduced-MHD model, as well as results from the linear full-MHD code CASTOR3D. For the cases presented, this new JOREK full-MHD model is numerically and physically reliable, even without the use of numerical stabilization methods. Non-linear modeling results of typical tokamak instabilities are presented, including disruption and edge-localized-mode physics, most relevant to current open issues concerning future tokamaks such as ITER and DEMO.

Original languageEnglish
Article number102510
Number of pages15
JournalPhysics of Plasmas
Volume27
Issue number10
DOIs
Publication statusPublished - 1 Oct 2020

Fingerprint

Dive into the research topics of 'Extended full-MHD simulation of non-linear instabilities in tokamak plasmas'. Together they form a unique fingerprint.

Cite this