Expressiveness modulo bisimilarity of regular expressions with parallel composition (Extended Abstract)

J.C.M. Baeten, S.P. Luttik, T. Muller, P.J.A. Tilburg, van

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

4 Citations (Scopus)

Abstract

The languages accepted by finite automata are precisely the languages denoted by regular expressions. In contrast, finite automata may exhibit behaviours that cannot be described by regular expressions up to bisimilarity. In this paper, we consider extensions of the theory of regular expressions with various forms of parallel composition and study the effect on expressiveness. First we prove that adding pure interleaving to the theory of regular expressions strictly increases its expressiveness modulo bisimilarity. Then, we prove that replacing the operation for pure interleaving by ACP-style parallel composition gives a further increase in expressiveness. Finally, we prove that the theory of regular expressions with ACP-style parallel composition and encapsulation is expressive enough to express all finite automata modulo bisimilarity. Our results extend the expressiveness results obtained by Bergstra, Bethke and Ponse for process algebras with (the binary variant of) Kleene’s star operation.
Original languageEnglish
Title of host publicationExpressiveness in Concurrency (17th International Workshop, EXPRESS'10, Paris, France, August 30th, 2010)
EditorsS. Fröschle, F.D. Valencia
PublisherEPTCS
Pages1-15
Publication statusPublished - 2010

Publication series

NameElectronic Proceedings in Theoretical Computer Science
Volume41
ISSN (Print)2075-2180

Fingerprint

Dive into the research topics of 'Expressiveness modulo bisimilarity of regular expressions with parallel composition (Extended Abstract)'. Together they form a unique fingerprint.

Cite this