Exploiting bisphosphonate–bioactive-glass interactions for the development of self-healing and bioactive composite hydrogels

Mani Diba, Jie An, Stephan Schmidt, Mathew Hembury, Dmitri Ossipov, Aldo R. Boccaccini, Sander C.G. Leeuwenburgh (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

20 Citations (Scopus)

Abstract

Hydrogels are widely recognized as promising candidates for various biomedical applications, such as tissue engineering. Recently, extensive research efforts have been devoted to the improvement of the biological and mechanical performance of hydrogel systems by incorporation of functional groups and/or inorganic particles in their composition. Bisphosphonates are a class of drugs, commonly used for treatment of osteoporosis, which exhibit a strong binding affinity for hydroxyapatite. In this study, the binding affinity of a bisphosphonate-functionalized polymer, hyaluronan, toward a bioactive glass (i.e., 45S5 Bioglass) is evaluated using force–distance measurements with atomic force microscopy. The strong interaction between bisphosphonate and bioactive glass is then exploited to develop organic–inorganic composite hydrogels and the viscoelastic and self-healing ability of these materials are investigated. Finally, the stability and mineralization behavior of these hydrogels are evaluated in simulated body fluid. Following this approach, injectable, bioactive and self-healing organic–inorganic composite hydrogels are produced, which mineralize abundantly and rapidly in simulated body fluid. These properties render these composite gels suitable for applications in bone-tissue engineering. (Figure presented.).

Original languageEnglish
Pages (from-to)1952-1959
Number of pages8
JournalMacromolecular Rapid Communications
Volume37
Issue number23
DOIs
Publication statusPublished - 1 Dec 2016
Externally publishedYes

Keywords

  • bioactive glasses
  • bisphosphonates
  • hydrogels
  • self-healing
  • tissue engineering

Fingerprint

Dive into the research topics of 'Exploiting bisphosphonate–bioactive-glass interactions for the development of self-healing and bioactive composite hydrogels'. Together they form a unique fingerprint.

Cite this