Expert judgment in life-cycle degradation and maintenance modelling for steel bridges

A. Kosgodagan, O. Morales-Napoles, J. Maljaars, Wim M.G. Courage

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

12 Downloads (Pure)


Markov-based models for predicting deterioration for civil infrastructures are widely recognized as suitable tools addressing this mechanism. The objective of this paper is to provide insights regarding a network of orthotropic steel bridges in terms of degradation. Consequently, a model combining a dynamic Bayesian network and a Markov chain is first introduced that builds up the network in a concise way. In an attempt to represent a network composed of two general classes of orthotropic steel bridges, the classical method of structured expert judgment is carried out as a quantification procedure. The first objective is to indirectly elicit transition probabilities for a Markov chain that probabilistically describes how each type bridge temporally deteriorates. Second, experts are asked to provide estimates on required conditional probabilities related to the Bayesian network. An in-depth analysis of the results is presented so that remarks and observations are subsequently pointed out and, finally conclusions are drawn.
Original languageEnglish
Title of host publicationIALCCE 2016: The Fifth International Symposium on Life-Cycle Civil Engineering, 16-19 September 2016, Delft, The Netherlands
Number of pages8
Publication statusPublished - 16 Oct 2016


Dive into the research topics of 'Expert judgment in life-cycle degradation and maintenance modelling for steel bridges'. Together they form a unique fingerprint.

Cite this