Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels

Research output: Contribution to journalArticleAcademicpeer-review

102 Citations (Scopus)
5 Downloads (Pure)

Abstract

Time-domain-based one-dimensional wave propagation models of the arterial system are preferable over one-dimensional wave propagation models in the frequency domain since the latter neglect the non-linear convection forces present in the physiological situation, especially when the vessel is tapered. Moreover, one-dimensional wave propagation models of the arterial system can be used to provide boundary conditions for fully three-dimensional fluid–structure interaction computations that are usually defined in the time domain. In this study, a time-domain-based one-dimensional wave propagation model in a cross-sectional area, flow and pressure (A,q,p)-formulation is developed. Using this formulation, a constitutive law that includes viscoelasticity based on the mechanical behaviour of a Kelvin body, is introduced. The resulting pressure and flow waves travelling through a straight and tapered vessel are compared to experimental data obtained from measurements in an in vitro setup. The model presented shows to be well suited to predict wave propagation through these straight and tapered vessels with viscoelastic wall properties and hereto can serve as a time-domain-based method to model wave propagation in the human arterial system.
Original languageEnglish
Pages (from-to)284-291
JournalJournal of Biomechanics
Volume41
Issue number2
DOIs
Publication statusPublished - 2008

Fingerprint

Dive into the research topics of 'Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels'. Together they form a unique fingerprint.

Cite this