Estimating the false discovery rate using nonparametric deconvolution

M.A. Wiel, van de, K.I. Kim

Research output: Contribution to journalArticleAcademicpeer-review

16 Citations (Scopus)

Abstract

Given a set of microarray data, the problem is to detect differentially expressed genes, using a false discovery rate (FDR) criterion. As opposed to common procedures in the literature, we do not base the selection criterion on statistical significance only, but also on the effect size. Therefore, we select only those genes that are significantly more differentially expressed than some f-fold (e.g., f= 2). This corresponds to use of an interval null domain for the effect size. Based on a simple error model, we discuss a naive estimator for the FDR, interpreted as the probability that the parameter of interest lies in the null-domain (e.g., µ <log2(2) = 1 ) given that the test statistic exceeds a threshold. We improve the naive estimator by using deconvolution. That is, the density of the parameter of interest is recovered from the data. We study performance of the methods using simulations and real data.
Original languageEnglish
Pages (from-to)806-815
JournalBiometrics
Volume63
Issue number3
DOIs
Publication statusPublished - 2007

Fingerprint

Dive into the research topics of 'Estimating the false discovery rate using nonparametric deconvolution'. Together they form a unique fingerprint.

Cite this