Abstract
The introduction of functional moieties in the donor polymer (side chains) offers a potential pathway toward selective modification of the nanomorphology of conjugated polymer:fullerene active layer blends applied in bulk heterojunction organic photovoltaics, pursuing morphology control and solar cell stability. For this purpose, two types of poly(3-alkylthiophene) random copolymers, incorporating different amounts (10/30/50%) of ester-functionalized side chains, were efficiently synthesized using the Rieke method. The solar cell performance of the functionalized copolymers was evaluated and compared to the pristine P3HT:PCBM system. It was observed that the physicochemical and opto-electronic characteristics of the polythiophene donor material can be modified to a certain extent via copolymerization without (too much) jeopardizing the OPV efficiency, as far as the functionalized side chains are introduced in a moderate ratio (
Original language | English |
---|---|
Pages (from-to) | 523-534 |
Number of pages | 12 |
Journal | Organic Electronics |
Volume | 14 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2013 |