Epoxide and oxetane based liquid crystals for advanced functional materials

Davey C. Hoekstra, Albert P.H.J. Schenning (Corresponding author), Michael G. Debije

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
32 Downloads (Pure)


Liquid crystalline elastomers (LCEs) and liquid crystalline networks (LCNs) are classes of polymers very suitable for fabricating advanced functional materials. Two main pathways to obtain LCEs and LCNs have gained the most attention in the literature, namely the two-step crosslinking of LC side-chain polymers and the photoinitiated free-radical polymerisation of acrylate LC monomers. These liquid crystal polymers have demonstrated remarkable properties resulting from their anisotropic shapes, being used in soft robotics, responsive surfaces and as photonic materials. In this review, we will show that LCs with cyclic ethers as polymerisable groups can be an attractive alternative to the aforementioned reactive acrylate mesogens. These epoxide and oxetane based reactive mesogens could offer a number of advantages over their acrylate-based counterparts, including oxygen insensitivity, reduced polymerisation shrinkage, improved alignment, lower processing viscosity and potentially extended resistivity. In this review, we summarise the research on these materials from the past 30 years and offer a glimpse into the potential of these cyclic ether mesogens.
Original languageEnglish
Article numberD0SM00489H
Pages (from-to)5106-5119
Number of pages14
JournalSoft Matter
Issue number22
Early online date21 May 2020
Publication statusPublished - 10 Jun 2020


Dive into the research topics of 'Epoxide and oxetane based liquid crystals for advanced functional materials'. Together they form a unique fingerprint.

Cite this