Enhancing separation efficiency in European syngas industry by using zeolites

A. Luna-Triguero, J. M. Vicent-Luna, M. J. Jansman, G. Zafeiropoulos, M. N. Tsampas, M. C.M. van de Sanden, H. N. Akse, S. Calero (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)

Abstract

Syngas is traditionally used in industry for production of fuels in the kerosene, gasoline and diesel range via Fischer-Tropsch, for the manufacture of bulk chemicals like ammonia, methanol and dimethyl ether and for synthesis of a whole array of fine chemicals. The carbon monoxide/hydrogen ratio of the syngas is an important design variable to maximize production of these compounds. Therefore, the search of effective processes that enable said ratio adjustment as well as individual compound purification is an essential and ongoing effort for industry. In this work, we propose a development of a zeolite-based separation process to obtain carbon dioxide-neutral fuels and chemicals. The process designed is based on gas uptake and release, combining separation efficiency with low separation costs. Calculation of separation behavior has been done for mixtures generated by plasmolysis of CO2. Carbon dioxide dissociation into CO and O2 and as a result a mixture of carbon monoxide, oxygen and a residual carbon dioxide is obtained. Therefore, the purification of CO becomes necessary. Here we provide a purification process design based in multicomponent adsorption and separation in commercial available zeolites. The process identifies NaX and NaY as the most suitable zeolites for separation in a wide range of operating conditions.

Original languageEnglish
Pages (from-to)113-121
Number of pages9
JournalCatalysis Today
Volume362
DOIs
Publication statusPublished - 15 Feb 2021

Keywords

  • Adsorption
  • Carbon dioxide-neutral fuels
  • Carbon monoxide
  • Fischer-Tropsch
  • Purification

Fingerprint

Dive into the research topics of 'Enhancing separation efficiency in European syngas industry by using zeolites'. Together they form a unique fingerprint.

Cite this