Electrical Fault Localisation Over a Distributed Parameter Transmission Line

Daniel Selvaratnam, Amritam Das, Henrik Sandberg

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

10 Downloads (Pure)

Abstract

Motivated by the need to localise faults along electrical power lines, this paper adopts a frequency-domain approach to parameter estimation for an infinite-dimensional linear dynamical system with one spatial variable. Since the time of the fault is unknown, and voltages and currents are measured at only one end of the line, distance information must be extracted from the post-fault transients. To properly account for high-frequency transient behaviour, the line dynamics is modelled directly by the Telegrapher's equation, rather than the more commonly used lumped-parameter approximations. First, the governing equations are non-dimensionalised to avoid ill-conditioning. A closed-form expression for the transfer function is then derived. Finally, nonlinear least-squares optimisation is employed to search for the fault location. Requirements on fault bandwidth, sensor bandwidth and simulation time-step are also presented. The result is a novel end-to-end algorithm for data generation and fault localisation, the effectiveness of which is demonstrated via simulation.

Original languageEnglish
Title of host publication2023 62nd IEEE Conference on Decision and Control, CDC 2023
PublisherInstitute of Electrical and Electronics Engineers
Pages7088-7093
Number of pages6
ISBN (Electronic)979-8-3503-0124-3
DOIs
Publication statusPublished - 19 Jan 2024
Event62nd IEEE Conference on Decision and Control, CDC 2023 - Singapore, Singapore
Duration: 13 Dec 202315 Dec 2023
Conference number: 62

Conference

Conference62nd IEEE Conference on Decision and Control, CDC 2023
Abbreviated titleCDC 2023
Country/TerritorySingapore
CitySingapore
Period13/12/2315/12/23

Fingerprint

Dive into the research topics of 'Electrical Fault Localisation Over a Distributed Parameter Transmission Line'. Together they form a unique fingerprint.

Cite this