Electrical conductive behavior of polymer composites prepared with aqueous graphene dispersions

Marcos Gomes Ghislandi, E. Tkalya, A. Alekseev, C.E. Koning, Gijsbertus de With

Research output: Contribution to journalArticleAcademicpeer-review

23 Citations (Scopus)

Abstract

Graphene was produced from graphite powder using the three best known water-based conversion approaches. The first two are based on chemical oxidation methods, only differing in the reduction process, either by the use of hydrazine or by thermal expansion, respectively. The third one is based on long-term ultrasonic exfoliation. Water/surfactant solutions were prepared with these three nanofillers and latex technology concept was applied for the preparation of conductive graphene/polystyrene composites with well-dispersed graphene platelets. The samples were characterized with respect to filler properties and morphology, and their influences on electrical conductive properties of the composites were compared. Microscopic studies showed that both reduction processes lead to agglomeration/wrinkling of the platelets, even though they yield composites with high conductivity and low percolation threshold. Although mechanical ultrasound exfoliation of graphite produces less defective multi-layer graphene, these platelets have a smaller lateral size and their composites exhibit a higher percolation threshold. Differences in electronic transport behavior were observed, which suggest direct contact transport competing with tunneling.
Original languageEnglish
Pages (from-to)88-94
Number of pages7
JournalApplied Materials Today
Volume1
Issue number2
DOIs
Publication statusPublished - 15 Dec 2015

Keywords

  • Graphene;
  • Latex Technology
  • Electrical conductivity
  • polymer composites

Fingerprint Dive into the research topics of 'Electrical conductive behavior of polymer composites prepared with aqueous graphene dispersions'. Together they form a unique fingerprint.

Cite this