Abstract
Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest
efficiencies, but are expensive. By moving to the nanowire regime the demand on material
quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide,
featuring a direct bandgap. This is one of the few materials combining large solar light
absorption and (close to) ideal band-edge positions for full water splitting. Here we report the
photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire
photocathode. By modifying geometry to reduce electrical resistance and enhance optical
absorption, and modifying the surface with a multistep platinum deposition, high current
densities and open circuit potentials were achieved. Our results demonstrate the capabilities
of this material, even when used in such low quantities, as in nanowires.
Original language | English |
---|---|
Pages (from-to) | 7824-1/7 |
Number of pages | 7 |
Journal | Nature Communications |
Volume | 6 |
DOIs | |
Publication status | Published - 2015 |