Efficient solution of Maxwell's equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method

M. Pisarenco, J.M.L. Maubach, I.D. Setija, R.M.M. Mattheij

Research output: Book/ReportReportAcademic

Abstract

The aperiodic Fourier modal method in contrast-field formulation is a numerical discretization and solution technique for solving scattering problems in electromagnetics. Typically, spectral discretization is used in the finite periodic direction and spatial discretization in the orthogonal direction. In the light of the fact that the structures of interest often have a large width-to-height ratio and that the two discretization approaches have different computational complexities, we propose exchanging the directions for spatial and spectral discretization. Moreover, if the scatterer has repeating patterns, swapping the discretization directions facilitates the reuse of previous computations. Therefore, the new method is suited for scattering from objects with a finite number of periods, such as gratings, memory arrays, metamaterials, etc. Numerical experiments demonstrate a considerable reduction of the computational costs in terms of time and memory. For a specific test case considered in this paper, the new method (based on alternative discretization) is 40 times faster and requires 100 times less memory than the method based on classical discretization.
LanguageEnglish
Place of PublicationEindhoven
PublisherTechnische Universiteit Eindhoven
Number of pages39
StatePublished - 2012

Publication series

NameCASA-report
Volume1234
ISSN (Print)0926-4507

Fingerprint

Maxwell equation
geometry
scattering
exchanging
reuse
gratings
electromagnetism
costs
formulations

Cite this

@book{fa0f20bf250747feb4ef70afe581cc42,
title = "Efficient solution of Maxwell's equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method",
abstract = "The aperiodic Fourier modal method in contrast-field formulation is a numerical discretization and solution technique for solving scattering problems in electromagnetics. Typically, spectral discretization is used in the finite periodic direction and spatial discretization in the orthogonal direction. In the light of the fact that the structures of interest often have a large width-to-height ratio and that the two discretization approaches have different computational complexities, we propose exchanging the directions for spatial and spectral discretization. Moreover, if the scatterer has repeating patterns, swapping the discretization directions facilitates the reuse of previous computations. Therefore, the new method is suited for scattering from objects with a finite number of periods, such as gratings, memory arrays, metamaterials, etc. Numerical experiments demonstrate a considerable reduction of the computational costs in terms of time and memory. For a specific test case considered in this paper, the new method (based on alternative discretization) is 40 times faster and requires 100 times less memory than the method based on classical discretization.",
author = "M. Pisarenco and J.M.L. Maubach and I.D. Setija and R.M.M. Mattheij",
year = "2012",
language = "English",
series = "CASA-report",
publisher = "Technische Universiteit Eindhoven",

}

Efficient solution of Maxwell's equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method. / Pisarenco, M.; Maubach, J.M.L.; Setija, I.D.; Mattheij, R.M.M.

Eindhoven : Technische Universiteit Eindhoven, 2012. 39 p. (CASA-report; Vol. 1234).

Research output: Book/ReportReportAcademic

TY - BOOK

T1 - Efficient solution of Maxwell's equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method

AU - Pisarenco,M.

AU - Maubach,J.M.L.

AU - Setija,I.D.

AU - Mattheij,R.M.M.

PY - 2012

Y1 - 2012

N2 - The aperiodic Fourier modal method in contrast-field formulation is a numerical discretization and solution technique for solving scattering problems in electromagnetics. Typically, spectral discretization is used in the finite periodic direction and spatial discretization in the orthogonal direction. In the light of the fact that the structures of interest often have a large width-to-height ratio and that the two discretization approaches have different computational complexities, we propose exchanging the directions for spatial and spectral discretization. Moreover, if the scatterer has repeating patterns, swapping the discretization directions facilitates the reuse of previous computations. Therefore, the new method is suited for scattering from objects with a finite number of periods, such as gratings, memory arrays, metamaterials, etc. Numerical experiments demonstrate a considerable reduction of the computational costs in terms of time and memory. For a specific test case considered in this paper, the new method (based on alternative discretization) is 40 times faster and requires 100 times less memory than the method based on classical discretization.

AB - The aperiodic Fourier modal method in contrast-field formulation is a numerical discretization and solution technique for solving scattering problems in electromagnetics. Typically, spectral discretization is used in the finite periodic direction and spatial discretization in the orthogonal direction. In the light of the fact that the structures of interest often have a large width-to-height ratio and that the two discretization approaches have different computational complexities, we propose exchanging the directions for spatial and spectral discretization. Moreover, if the scatterer has repeating patterns, swapping the discretization directions facilitates the reuse of previous computations. Therefore, the new method is suited for scattering from objects with a finite number of periods, such as gratings, memory arrays, metamaterials, etc. Numerical experiments demonstrate a considerable reduction of the computational costs in terms of time and memory. For a specific test case considered in this paper, the new method (based on alternative discretization) is 40 times faster and requires 100 times less memory than the method based on classical discretization.

M3 - Report

T3 - CASA-report

BT - Efficient solution of Maxwell's equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method

PB - Technische Universiteit Eindhoven

CY - Eindhoven

ER -