TY - JOUR
T1 - Efficient polymer solar cells on opaque substrates with a Laminated PEDOT : PSS top electrode
AU - Gupta, D.
AU - Wienk, M.M.
AU - Janssen, R.A.J.
PY - 2013
Y1 - 2013
N2 - Solution processed polymer:fullerene solar cells on opaque substrates have been fabricated in conventional and inverted device configurations. Opaque substrates, such as insulated steel and metal covered glass, require a transparent conducting top electrode. We demonstrate that a high conducting (900 S cm-1) PEDOT:PSS layer, deposited by a stamp-transfer lamination technique using a PDMS stamp, in combination with an Ag grid electrode provides a proficient and versatile transparent top contact. Lamination of large size PEDOT:PSS films has been achieved on variety of surfaces resulting in ITO-free solar cells. Power conversion efficiencies of 2.1% and 3.1% have been achieved for P3HT:PCBM layers in inverted and conventional polarity configurations, respectively. The power conversion efficiency is similar to conventional glass/ITO-based solar cells. The high fill factor (65%) and the unaffected open-circuit voltage that are consistently obtained in thick active layer inverted geometry devices, demonstrate that the laminated PEDOT:PSS top electrodes provide no significant potential or resistive losses.
AB - Solution processed polymer:fullerene solar cells on opaque substrates have been fabricated in conventional and inverted device configurations. Opaque substrates, such as insulated steel and metal covered glass, require a transparent conducting top electrode. We demonstrate that a high conducting (900 S cm-1) PEDOT:PSS layer, deposited by a stamp-transfer lamination technique using a PDMS stamp, in combination with an Ag grid electrode provides a proficient and versatile transparent top contact. Lamination of large size PEDOT:PSS films has been achieved on variety of surfaces resulting in ITO-free solar cells. Power conversion efficiencies of 2.1% and 3.1% have been achieved for P3HT:PCBM layers in inverted and conventional polarity configurations, respectively. The power conversion efficiency is similar to conventional glass/ITO-based solar cells. The high fill factor (65%) and the unaffected open-circuit voltage that are consistently obtained in thick active layer inverted geometry devices, demonstrate that the laminated PEDOT:PSS top electrodes provide no significant potential or resistive losses.
U2 - 10.1002/aenm.201201061
DO - 10.1002/aenm.201201061
M3 - Article
SN - 1614-6832
VL - 3
SP - 782
EP - 787
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 6
ER -