Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

O.M. Kate, ten, M. Jong, de, H.T.J.M. Hintzen, E. Kolk, van der

Research output: Contribution to journalArticleAcademicpeer-review

44 Citations (Scopus)
170 Downloads (Pure)

Abstract

Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge solar cells with and without an integrated spectral shifting, quantum cutting, or quantum tripling layer using their measured internal quantum efficiency (IQE) curves. Our detailed balance limit calculations not only take into account light in-coupling efficiency of the direct AM1.5 spectral irradiance but also wavelength dependence of the refractive index and the IQEs of the cells and the angular dependent light in-coupling of the indirect spectral irradiance. An ideal quantum cutting layer enhances all cell efficiencies ranging from a modest 2.9% for c-Si to much larger values of 4.0%, 7.7%, and 11.2% for CIGS, Ge, and GaSb, respectively. A quantum tripling layer also enhances cell efficiencies, but to a lesser extent. These efficiency enhancements are largest for small band gap cells like GaSb (7.5%) and Ge (3.8%). Combining a quantum tripling and a quantum cutting layer would enhance efficiency of these cells by a factor of two. Efficiency enhancement by a simple spectral shifting layer is limited to less than 1% in case the IQE is high for blue and UV lights. However, for CdTe and GaSb solar cells, efficiency enhancements are as high as 4.6% and 3.5%, respectively. A shifting layer based on available red LED phosphors like Sr2Si5N8:Eu will raise CdTe efficiency by 3.0%. (C) 2013 AIP Publishing LLC.
Original languageEnglish
Pages (from-to)084502-1/9
JournalJournal of Applied Physics
Volume114
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function'. Together they form a unique fingerprint.

Cite this