Effects of sampling skewness of the importance-weighted risk estimator on model selection

Wouter Kouw, Marco Loog

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

4 Citations (Scopus)

Abstract

Importance-weighting is a popular and well-researched technique for dealing with sample selection bias and covariate shift. It has desirable characteristics such as unbiasedness, consistency and low computational complexity. However, weighting can have a detrimental effect on an estimator as well. In this work, we empirically show that the sampling distribution of an importance-weighted estimator can be skewed. For sample selection bias settings, and for small sample sizes, the importance-weighted risk estimator produces overestimates for data sets in the body of the sampling distribution, i.e. The majority of cases, and large underestimates for data sets in the tail of the sampling distribution. These over- and underestimates of the risk lead to sub-optimal regularization parameters when used for importance-weighted validation.

Original languageEnglish
Title of host publicationInternational Conference on Pattern Recognition
Place of PublicationPiscataway
PublisherInstitute of Electrical and Electronics Engineers
Pages1468-1473
Number of pages6
ISBN (Electronic)9781538637883
DOIs
Publication statusPublished - 26 Nov 2018
Externally publishedYes
Event24th International Conference on Pattern Recognition, ICPR 2018 - Beijing, China
Duration: 20 Aug 201824 Aug 2018

Conference

Conference24th International Conference on Pattern Recognition, ICPR 2018
Country/TerritoryChina
CityBeijing
Period20/08/1824/08/18

Fingerprint

Dive into the research topics of 'Effects of sampling skewness of the importance-weighted risk estimator on model selection'. Together they form a unique fingerprint.

Cite this