Effects of mechanical forces on maintenance and adaptation of form in trabecular bone

H.W.J. Huiskes, R. Ruimerman, G.H. Lenthe, van, J.D. Janssen

Research output: Contribution to journalArticleAcademicpeer-review

883 Citations (Scopus)
1 Downloads (Pure)


The architecture of trabecular bone, the porous bone found in the spine and at articulating joints, provides the requirements for optimal load transfer, by pairing suitable strength and stiffness to minimal weight according to rules of mathematical design. But, as it is unlikely that the architecture is fully pre-programmed in the genes, how are the bone cells informed about these rules, which so obviously dictate architecture? A relationship exists between bone architecture and mechanical usage while strenuous exercise increases bone mass9, disuse, as in microgravity and inactivity, reduces it. Bone resorption cells (osteoclasts) and bone formation cells (osteoblasts) normally balance bone mass in a coupled homeostatic process of remodelling, which renews some 25% of trabecular bone volume per year. Here we present a computational model of the metabolic process in bone that confirms that cell coupling is governed by feedback from mechanical load transfer.This model can explain the emergence and maintenance of trabecular architecture as an optimal mechanical structure, as well as its adaptation to alternative external loads.
Original languageEnglish
Pages (from-to)704-706
Number of pages3
Issue number6787
Publication statusPublished - 2000


Dive into the research topics of 'Effects of mechanical forces on maintenance and adaptation of form in trabecular bone'. Together they form a unique fingerprint.

Cite this