Effect of cycle-induced crack formation on the hydration behaviour of K2CO3 particles: Experiments and modelling

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)


Thermochemical energy storage using salt hydrates is a promising concept to bridge the gap between supply and demand for solar thermal energy in residential buildings. Using a suitable thermochemical material such as a salt hydrate, a thermal energy storage device, also known as a heat battery, can be created to supply low-temperature thermal energy during colder periods. To generate adequate power from a heat battery for the production of domestic hot tap water or space heating, the hydration rate of the salt hydrate needs to be sufficiently fast. It is hypothesized that the hydration rate of the material increases over multiple charge and discharge cycles due to crack formation and volume increase of the salt hydrate particles. This hypothesis is tested by performing two kinds of experiments: optical microscopy experiments using a micro-climate chamber to evaluate the particle size, and Thermo Gravimetric Analysis (TGA) experiments to determine the hydration rate of the particles. The hydration rate and particle size are input for a nucleation and growth model that takes into account crack formation and particle growth. Optical microscopy experiments show a particle expansion of approximately 30 % over 12 cycles. Typical hydration rates are increased by a factor 15 comparing the first and the 12th TGA cycle. It is shown that particle growth and crack formation significantly contribute to the improvement of the hydration rate. Finally, taking into account crack formation and particle growth in the numerical model results in a good agreement between model and experiments. Such a numerical model can be used for heat battery design.

Original languageEnglish
Article number178752
Number of pages10
JournalThermochimica Acta
Publication statusPublished - Oct 2020


  • Crack formation
  • Heat battery
  • Nucleation and growth model
  • Thermochemical energy storage
  • Thermogravimetric analysis

Fingerprint Dive into the research topics of 'Effect of cycle-induced crack formation on the hydration behaviour of K<sub>2</sub>CO<sub>3</sub> particles: Experiments and modelling'. Together they form a unique fingerprint.

Cite this