Abstract
An investigation of the polymer particle growth characteristics and polymer molecular weight and composition distributions in ethylene homopolymerization and ethylene/1-hexene copolymerization has been carried out with a catalyst comprising a zirconocene and methylaluminoxane immobilized on a silica support. The presence of 1-hexene leads to higher productivity and easier fragmentation of the support during particle growth. Crystallization analysis fractionation and gel permeation chromatography analysis of ethylene/1-hexene copolymers prepared at different polymerization times reveals a broadening of the chemical composition distribution with increasing polymerization time as a result of the gradual formation of a relatively high-molecular-weight, ethylene-rich fraction. The results are indicative of significant monomer diffusion effects in both homopolymerization and copolymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2883-2890, 2006
Original language | English |
---|---|
Pages (from-to) | 2883-2890 |
Journal | Journal of Polymer Science, Part A: Polymer Chemistry |
Volume | 44 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2006 |