Edge localized modes control: experiment and theory

M. Becoulet, G.T.A. Huysmans, P. Thomas, E. Joffrin, F. Rimini, P. Monier-Garbet, A. Grosman, P. Ghendrih, V. Parail, P. Lomas, G. Matthews, H. Wilson, M. Gryaznevich, G. Counsell, A. Loarte, G. Saibene, R. Sartori, A. Leonard, P. Snyder, T. EvansP. Gohil, R. Moyer, Y. Kamada, N. Oyama, T. Hatae, K. Kamiya, A. Degeling, Y. Martin, J. Lister, J. Rapp, C. Perez, P. Lang, A. Chankin, T. Eich, A. Sips, J. Stober, L. Horton, A. Kallenbach, W. Suttrop, S. Saarelma, S. Cowley, J. Lönnroth, M. Shimada, A. Polevoi, G. Federici

Research output: Contribution to journalArticleAcademicpeer-review

18 Citations (Scopus)


The paper reviews recent theoretical and experimental results focussing on the identification of the key factors controlling ELM energy and particle losses both in natural ELMs and in the presence of external controlling mechanisms. Present experiment and theory pointed out the benefit of the high plasma shaping, high q 95 and high pedestal density in reducing the ELM affected area and conductive energy losses in Type I ELMs. Small benign ELMs regimes in present machines (EDA, HRS, Type II, Grassy, QH, Type III in impurity seeded discharges at high δ ) and their relevance for ITER are reviewed. Recent studies of active control of ELMs using stochastic boundaries, small pellets and edge current generation are presented.
Original languageEnglish
Pages (from-to)677-683
JournalJournal of Nuclear Materials
Publication statusPublished - 1 Mar 2005
Externally publishedYes


  • Macroinstabilities


Dive into the research topics of 'Edge localized modes control: experiment and theory'. Together they form a unique fingerprint.

Cite this