TY - JOUR
T1 - Dynamics of terrace formation in a nanostructured thin block copolymer film
AU - Lyakhova, K.S
AU - Horvat, A.
AU - Zvelindovsky, A.V.
AU - Sevink, G.J.A.
PY - 2006
Y1 - 2006
N2 - We have used dynamic self-consistent field (DSCF) theory to investigate the structural evolution of an ABA block copolymer thin film placed between a solid substrate and a free surface. In line with the few existing theoretical studies for pure homopolymers and mixtures, the free interface is introduced by a void component. In our calculations, the free surface experiences surface roughening and eventually the formation of terraces, as in the experiments. The kinetic pathway of the microstructures was compared to findings of an existing detailed experimental study (Knoll, A.; Lyakhova, K. S.; Horvat, A.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Nat. Mater. 2004, 3, 886) and was found to be equivalent in detail. This corroborates our assumption in this earlier work that the pathway due to changing film thickness is similar to a pathway due to changing surface energetics. Moreover, our calculations show for the first time that microstructural transitions are a driving force of polymer/air interface curving and the formation of terraces. [on SciFinder (R)]
AB - We have used dynamic self-consistent field (DSCF) theory to investigate the structural evolution of an ABA block copolymer thin film placed between a solid substrate and a free surface. In line with the few existing theoretical studies for pure homopolymers and mixtures, the free interface is introduced by a void component. In our calculations, the free surface experiences surface roughening and eventually the formation of terraces, as in the experiments. The kinetic pathway of the microstructures was compared to findings of an existing detailed experimental study (Knoll, A.; Lyakhova, K. S.; Horvat, A.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Nat. Mater. 2004, 3, 886) and was found to be equivalent in detail. This corroborates our assumption in this earlier work that the pathway due to changing film thickness is similar to a pathway due to changing surface energetics. Moreover, our calculations show for the first time that microstructural transitions are a driving force of polymer/air interface curving and the formation of terraces. [on SciFinder (R)]
U2 - 10.1021/la060265c
DO - 10.1021/la060265c
M3 - Article
C2 - 16768518
VL - 22
SP - 5848
EP - 5855
JO - Langmuir
JF - Langmuir
SN - 0743-7463
IS - 13
ER -