Dynamic buckling of a base-excited thin cylindrical shell carrying a top mass

N.J. Mallon, R.H.B. Fey, H. Nijmeijer

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

1 Downloads (Pure)


This paper considers dynamic buckling of a harmonically base-excited vertical cylindrical shell carrying a top mass. Based on Donnell's nonlinear shell theory, a semi-analytical model is derived which exactly satisfies the (in-plane) boundary conditions. This model is numerically validated through a comparison with quasi-static and modal analysis results obtained using finite element modelling. The steady-state nonlinear dynamics of the base-excited cylindrical shell with top mass are examined using both numerical continuation of periodic solutions and standard numerical time integration. In these dynamic analyses the cylindrical shell is preloaded by the weight of the top mass. This preloading results in a single unbuckled stable static equilibrium state. A critical value for the amplitude of the harmonic base-excitation is determined. Above this critical value, the shell exhibits an instationary beating type ofresponse with time intervals showing severe out-of-plane deformations (it buckles dynamically). Similar as for the static buckling case, the critical value highly depends on the initial imperfections present in the shell.
Original languageEnglish
Title of host publicationProceedings of the Arctic Summer Conference on Dynamics, Vibrations and Control, 9-11 August 2007, Saarisellkae, Finnland
Place of PublicationSaarisellkae, Finnland
Publication statusPublished - 2007


Dive into the research topics of 'Dynamic buckling of a base-excited thin cylindrical shell carrying a top mass'. Together they form a unique fingerprint.

Cite this