Abstract
The dynamics of mechanical systems with dry friction elements, modelled by set-valued force laws, can be described by differential inclusions. The switching and set-valued nature of the friction force law is responsible for the hybrid character of such models. An equilibrium set of such a differential inclusion corresponds to a stationary mode for which the friction elements are sticking. The attractivity properties of the equilibrium set are of major importance for the overall dynamic behaviour of this type of systems. Conditions for the attractivity of the equilibrium set of linear MDOF mechanical systems with multiple friction elements are presented. These results are obtained by
application of a generalisation of LaSalle’s principle for differential inclusions of Filippov-type. Besides passive systems, also systems with negative viscous damping are considered. For such
systems, only local attractivity of the equilibrium set can be assured under certain conditions. Moreover, an estimate for the region of attraction is given for these cases. The results are illustrated
by means of a 2DOF example.
Original language | English |
---|---|
Title of host publication | Proceedings of IDETC/CIE ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 24-28 september 2005, California, United States |
Pages | on-CDROM |
Publication status | Published - 2005 |