Do We Actually Need Dense Over-Parameterization? In-Time Over-Parameterization in Sparse Training

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

67 Citations (Scopus)
Filter
Conference contribution

Search results

  • 2021

    Selfish Sparse RNN Training

    Liu, S., Mocanu, D. C., Pei, Y. & Pechenizkiy, M., 18 Jul 2021, Proceedings of the 38th International Conference on Machine Learning (ICML2021) . PMLR, Vol. 139. p. 6893--6904 139

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
  • Sparse Training via Boosting Pruning Plasticity with Neuroregeneration

    Liu, S., Chen, T., Chen, X., Atashgahi, Z., Yin, L., Kou, H., Shen, L., Pechenizkiy, M., Wang, Z. & Mocanu, D. C., 2021, Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021. Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P. S. & Wortman Vaughan, J. (eds.). Neural information processing systems foundation, p. 9908-9922 15 p. (Advances in Neural Information Processing Systems; vol. 12).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    61 Citations (Scopus)