TY - JOUR
T1 - Distributed generation support for voltage regulation : an adaptive approach
AU - Kechroud, A.
AU - Ribeiro, P.F.
AU - Kling, W.L.
PY - 2014
Y1 - 2014
N2 - Distributed generation is expected to introduce additional issues in the operation of distribution networks. Among these, voltage variation is of particular concern and needs to be addressed concisely. Conventionally, voltage regulators are placed in transmission level, where they use reactive power control to alter voltage levels. This approach has been particularly effective due to the inductive nature of transmission networks. However, seen from that point of view, distribution networks are different. Hence, this paper introduces a new methodology to address the problem of DG units dispatch while maintaining voltage levels within desired levels. This approach, termed identification-based adaptive voltage regulation (I-BAVR), uses real-time identification of the Thevenin equivalent circuit of the system, giving the X/R ratio to identify the active and reactive power dispatch of the DG unit. The I-BAVR approach has been validated though several steady-state and dynamic simulation scenarios on a typical medium voltage network. These simulations show that by using an appropriate control strategy, DG can regulate the voltage to the specified levels by adapting the amounts of it active and reactive power to the systems operational changes. (c) 2013 Elsevier B.V. All rights reserved.
AB - Distributed generation is expected to introduce additional issues in the operation of distribution networks. Among these, voltage variation is of particular concern and needs to be addressed concisely. Conventionally, voltage regulators are placed in transmission level, where they use reactive power control to alter voltage levels. This approach has been particularly effective due to the inductive nature of transmission networks. However, seen from that point of view, distribution networks are different. Hence, this paper introduces a new methodology to address the problem of DG units dispatch while maintaining voltage levels within desired levels. This approach, termed identification-based adaptive voltage regulation (I-BAVR), uses real-time identification of the Thevenin equivalent circuit of the system, giving the X/R ratio to identify the active and reactive power dispatch of the DG unit. The I-BAVR approach has been validated though several steady-state and dynamic simulation scenarios on a typical medium voltage network. These simulations show that by using an appropriate control strategy, DG can regulate the voltage to the specified levels by adapting the amounts of it active and reactive power to the systems operational changes. (c) 2013 Elsevier B.V. All rights reserved.
U2 - 10.1016/j.epsr.2013.09.004
DO - 10.1016/j.epsr.2013.09.004
M3 - Article
SN - 0378-7796
VL - 107
SP - 213
EP - 220
JO - Electric Power Systems Research
JF - Electric Power Systems Research
ER -